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1. We shall consider a continuous medium, In which thr free energy P 
#and other thermodynamic potentials (internal energy U , entropy S etc.) 
are functions of a system of parameters 

T, P, gii, ViP* ni9 Vjni (1) 

Here, T Is the temperature, p Is the density, 0'1 are are the contra- 
variant components of the metric tensor ln the Lagranglan system of coordl- 
nates 5' at the time under consideration, VIP are the components of the 
vector gradp ln the system ?I, n, are the components of some vector (for 
example, the vector describing the anlsotropy of the medium cl]), and vjn, 
are the components of the gradient of this vector. 

Such a medium can be considered as a generalization of the model of a 
compressible anlsotroplc fluid. Elastic media of thels kind have been lntro- 
duced In [2 and 33. 

We shall also assume, that for all processes In the medium under conslder- 
atlon 

dgle) = TdS (dq@) Is the external heat Influx) (2) 

It Is easy to show, that If the free energy F depends on ViP and 
V$' the equation of the first law of thermodynamics for an elementary par- 
ticle of the medium cannot be written In the classic form 

dE + dU = dA@) + dg@’ (3) 

Here, E Is the kinetic energy and dA te) Is the elementary work of the 
external forces. 

Actually, from (3), using (2) and assuming that the stress tensor p*J 
Is symmetric, we obtain the equation of the heat Influx 

dF=p~dsij-S’dT 
P 

(4) 

If we use the relations valid 

dP_ . deij 
-&- -P&-&9 

Equation (4) can be written as 

In a Lagranglan system of coordinates, 

dg” _=- 
dt 

zgMg’ f d& 
dt 

(5) 
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aF 
pg’j g + 2gkig’j - 

agkl 
deij + a%dViP f 

aF aF 

+ an, dni + avjnc 

$i 
- dvjni = y dqj - S dT 

Since Equation (6) must be satisfied for all possible processes In the 
medium under consideration, and F and S depend only on the parameters 
(1) and not on the rate of change of these parameters, then either there 
exists some, generally speaking, nonintegrable relations between the dlffer- 
entlals 'Vip, dV.ni,dT, de,j and dn. or, If such relations are absent, the 
following equalities are always true' 

aF 
-p=O* 

aF 
-=o 
av jni 

It 1s easy to see, that If there exist 
ferentlals of the parameters (l), or If (7 f 

eneral relations between the dlf- 
Is satisfied, but not Identically, 

then the system of equations for the determlnatlorm or the vector n In such 
a medium will be overspeclfled. This means that only displacements of some 
particular types can exist in the medium. However, we are considering here 
media In which any continuous displacements are possible. For these, It 
follows from (6) that Equations (7) are satisfied ldentlcally I.e. F Is 
Independent of ViP and Vj%* This contradicts assumption (II and proves 
that, for media with parametric relations (l), the first law of thermodynam- 
ics cannot be written In the form (3). 

3. It Is known [4], that In some cases (for example, if polarlzatlon and 
magnetization of the medium In the presence of an electroma netlc field are 
considered) we must add to the right-hand side of Equation another Influx 
of energy, different from dA@) and d@), 

f 3) 
The arguments of Section 2 above 

show, that a change of the free energy, connected only with a change of the 
gradient of density, for example, cannot be brought about by mechanical work 
of macroscopic forces and heat Influx to the particle, but be connected with 
an additional energy Influx of a different nature. We shall denote this 
energy Influx per unit mass by dq**, and write the heat Influx equation In 
the form (*) 

4. It Is 

1) The 
tlcle, I.e. 

. . 

dF = $,: deij - S dT + dq** (8) 

natural [4]to make the following assumption about dq**. 

energy Influx dp ** takes place through the surface of the par- 

p dq** = tliv (2 dt = VkQkdt (9) 

2) Vector Q becomes zero, If all parameters (1) remain constant In 
the particle, i.e. 

Qkdt = xkdT + A!;;@ f Mkidvip $ Nkidni + PkiidVjni (IO) 

Here we did not Include a term of the type t since, although p 
and @Jj are Independent parameters, their dlff%%.als are related by a 
general equation, namely 2dp = pgijdglJ. 

Using (9)) (IO) and (5), we can rewrite the heat influx equation 

$dT- papg 
( 

aF ij + zgkigh aF aF 
Irl f VkP aVkP g ij 
ag 

deij - 
. . 

aF 
- p zp gijVkdeij -I- E dni + ___ 

aVjni 
dVjni = - S dT -+ ‘+ deij $ 

+ $ vkmk dT + $ mk vk dT - ; vkhkij dEij - .? Akij.vkdeij f 
P 

(II) 

") The necessity of Introducing dq** was fully discussed In Sedov's paper 
at the 11th International Congress for Applied Mechanics, In Munich, 1964. 
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+ $ vkMki dV{ p + $ Mk’ VkdV# f $ Vflkidni f 

+ $ vkPkP dvjni + !_ Pkii vk dVjni 
P 

Here, the following equation was also used: 

dViP = - ?ipBk’dekj - pgkf vide,j 

b Nki vkdni + 
(11) 

cont. 

(12) 

the 
From (11) we can obtalp. all the defining relations for our medium, with 
assumption that xk, A if, ML', Ne and pkll are independent of the rate of 

change of the parameters (l), and between the differentials, appearing In 
(ll), there are no general relations for the medium under consideration. 

For the determination of the defining equations we shall also use the 
following relations where Vi Is the covarlant differentiation on f1 and 
d 1s the differential on time with constant 5' 

dVkP = V,@ 

dvkeij’ = V de.. - (E.~L~$~+ IS.“L”?~) 
k 11 I a k]s 

v de 
P w 

dVk V&' = V&V&'] - V"PL;j vpdsQr 

dVkni = vkdni - n=,Lggps’ v,de,, 

Here 

2L~~ = s*p (Sj'Sk' + Skqsjr) f Sjp (Sk’S1’ f Si’Skr) - 6,’ (Si’Sj’ ~ Sj’S*‘) (13) 

(6$ are Kronecker iymbols) 

Equations (13) become obvious, If we consider that for time differentials 
the Chrlstoffel symbols rt, in the Lagrsnglan system of coordinates are 

dr~j ~1 ViVjVk dt = gk8 (VidCjs f Vi CEeis - v&j) = LfirgksVpdEqr 

With the above assumptions, the requirement that the heat Influx Equation 
(11) should be satisfied for all processes In the medium, leads to the defln- 
lng equations 

M""=C t pkii = C I Xk = 0 (14) 

. . l3F 
N”= p avini 

g = $ vkNk’ 
i 

(15) 

(16) 

(17) 

pii _ 
- - 

P 
(18) 

If the free energy Is known as a function of Its parameters, Equations 
(14), (16) and (17) csn be used to calculate the energy influx dq*'" 

dq 

(19) 

We can see from (19) that, in particular, ln the deformation of media ln 
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which F does not depend on V& but depends on Vjni, there will, in gen- 
eral, be a nonzero ,+p** even in processes with dni= 0 and dvkni= 0. 

Equations (17) and (18) show that the stress tensor in such a medium is 
not spherical. which is also true for conditions of eaulllbrlum. Therefore. 
a medium in which the free energy at a given time depends not only on the . 
density, but also on the gradient of the. density, is not a fluid In the usual 
sense. 

We can also note that the dependence of the free energy on the gradients 
of density and vector n , leads to the dependence of the stresses, In the 
general case, on the gradients of all the parameters (1), In particular on 
the second space derivatives of and n . This de 
derivatives Is linear. The lnveskgatlon of media ( *P 

endence on the second 
in which the free 

energy depends on the time derivatives of the density f53, also shows that 
the stresses depend linearly, to a large extend, on the time derivatives of 

In each case, this conclusion js slgnlflcantly connected with the assump- 
tion that dq ** is the energy Influx through the surface (or is absent), and 
also with the reversibility condition (2). 

5. To exhibit the characteristic peculiarities of the mechanical behavior 
of media, In which the energy depemds on the gradient of density, we shall 
investigate the following simple model. Let P depend only on T, p, Q*J 
and yip, i.e. 

F = F (TV PIP), P = &iP VjP (20) 

In addition assume that 
F=Fl+kap 

2P 
where p,= fl(c, 
Is a constant. 

T) is the free energy of a mass unit of Ideal gas and k2 
The dimensions of k are the dimensions of the product of 

F with the square of some length 1 . Thus, In a number of parameters, 
describing the medium, we get a linear behavior C61. In the statement of 
specific problems there is usually Involved some length L , describing the 
objects relevant to the problem. Apparently, the Improvement of the Ideal 
gas model, given by Equation (21), can become effective In problems where 
L2 - La or L2 -sg la. 

According to (15), the expression for the entropy of the medium will 
coincide with the expression for the entropy of the ideal gas, and, In par- 
ticular, the adiabatic condition (coinciding here with the condition 
s = const) will be T= cpyml 

We shall also write the equatlns for the stress tensor componenets 
(coinciding with Clapeyron's cc..stiori for t = 0) 

RpT + $?.p _ k2~, VaP 
$ vivip 

(2.3 

and the closed system of equations, describing the adiabatic motions of the 
medium with no body forces in an Eulerian system of coordinates 

dp + pv# =0 

P!g=-Ap’-’ V$ + 2+ vipvjpvjp - ?!f vjvipvip - 4 vipv,vjp + k2ViVjViP 

( /, = ko - = corm 
PO Y-l 1 

I 

(24) 

Consider small (P =Pof P'S P' and vi and their derivatives being small) 
unldlmenslonal motions with plane waves. Obviously, with such an approxima- 
tion we can only obtain longitudinal waves In the medium. This Is connected 
with the fact, that to a first order approximation the stress tensor is here 
spherical. 

*) Such media were Investigated in Egllt's dissertation, MGU, 1962. 
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For longitudinal waves, travelllng along the x-axis, we get Equation 

a2pI= 
at2 

a2 a2P -- 
a22 

k2 #?.! (a2 = TRT,-,) 

Here a0 is the sound velocity in the ideal gas. 

Equation (25) has a solution of the form exp [i(Uz-at)], and the wave- 
length is connected with the frequency of the dispersion equation 

Hence, with the consideration of the dependence of the free energy on the 
gradient of density we find a sound dispersion in the medium. This effect 
exists for short waves (&~~-a~~) and not for long ones (~a2<Q2). By measur- 
ing the dispersion of short waves we can find the magnitude of k" for the 
medium under consideration. 
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